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Abstract

Recursive algorithms and recurrence relations are common in various fields of engineering.  However, true recursive programming is not a subject that is often presented to students.  Recursive programming often yields much more simple and direct implementations of recursive algorithms.  This paper presents a series of progressively more complex recursive programs that can be very useful in introducing students to recursive programming.  The recursive programs begin with the factorial and combinatorial functions, and develop toward an algorithm to determine all length n binary sequences of weight m.  The resulting algorithm has applications in such areas as pseudorandom noise (PN) spread spectrum communication and error control coding.  The recursive algorithms are developed in Matlab making use of its matrix manipulation and ability to execute recursive functions.  

Introduction

Recursive algorithms and recurrence relations frequently appear in engineering analysis, design and simulation.  Recursion can be found in the calculation of Fibonacci numbers, combinatorics and polynomials, just to name a few.  Some simple recurrence relations can be reduced to closed form solutions, but many more complex relations cannot. [1]  Often times the recursive algorithms or recurrence relations are implemented in computer programs using linear programming techniques (‘for’ or ‘while’ loops) which can obscure the recurrence properties of the recurrence characteristics.  A more direct and often much more simple implementation is to use recursive programming. [2]  Recursive programming is defined as a technique whereby a function actually calls itself as part of the algorithm to arrive at a solution.

Recursive programming is a topic that is not often presented to engineering students outside specific contexts such as artificial intelligence.  However, recursive programming is a fundamental programming technique whereby larger algorithms are solved by reducing the problem to progressively smaller algorithms until a terminating condition is reached.  The solution is implemented in software as a function that calls itself with progressively smaller parameters sets or values until a simple or even trivial solution can be identified, thus ending the recursion. [3]  Older programming languages such as Fortran did not support recursion and earlier compilers added significant overhead to recursive algorithms.  Thus many practicing engineers either are not familiar with recursive programming or associate it with inefficient code.  However, modern programming languages and environments such as Matlab and C efficiently support recursive programming.  As far back as the 1970’s, some have recognized that recursive programming is a natural way to program many algorithms, and that recursive programming should be considered for all algorithms that are not obviously better suited for linear programming techniques. [4]  Removal of recursion in some complex algorithms will increase the speed of computation, but often yields code in which the original algorithm is difficult to decipher.

The initial motivation for the development of the algorithms and Matlab functions described in this paper originated from a spread spectrum correlation problem.  The effort involved finding spreading codes with minimum sidelobe correlation (non-circular) peaks for a uni-polar spreading scheme.  Typical spread spectrum coding schemes utilize maximal length codes and Gold codes.  These however are available only for particular length codes, are designed for bipolar modulations, and are optimized for minimum sidelobes on circular correlations.  A direct search was needed to identify optimum spreading codes of short (~10 chips) to moderate (~32 chips) length spreading codes.  It was determined that the average sidelobe level was minimized for codes with an equal number of 1’s and 0’s.  Thus the direct search can be limited to spreading codes of Hamming weight (number of ones) equal to ½ the code length, n.

Initially, the spreading codes were generated sequentially and correlation sidelobes calculated only for codes of weight 
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.  As code lengths became longer this search method became very slow.  Thus an algorithm for directly identifying the codes of weight 
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 was needed.  The result was a more general algorithm for finding all binary codes of length n with Hamming weight m.  Also, the algorithm was generalized first to the trinary sequence case with given weight per symbol, and then to the even more general n-length q-nary sequences of given symbol weights.

The algorithms developed are useful for searching spreading codes for direct sequence spread spectrum systems, and can also be used for developing specialized error control or line codes.  The final algorithms are excellent examples of recursive programming, Matlab programming and the use of combinatorics.  The use of recursive programming led to more intuitive and compact functions than are possible using conventional linear programming techniques.

In the remainder of this paper the algorithm development as a progressive development of recursive programs from the basic factorial example to the more complex and challenging examples will be presented.  All examples are implemented using Matlab.  The algorithms do not contain input error checking to simplify the presentation and to prevent the error checking from obscuring the implementation of the recursive algorithms.  Hence, errors can occur if the inputs are invalid for the function being executed.

Basic Recursive Programs

Probably one of the most basic recursive functions is the algorithm to calculate n! (n factorial).  It is easy to see that n! can be calculated recursively from the relationship 
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 for positive integers n.

The following Matlab code can be used to calculate 
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function N=fact(n)

if n==0

%Terminating condition

  N=1;

else


%Recursion algorithm

  N=n*fact(n-1);

end
The standard combinatorial function (n choose m) can also be expressed recursively as
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It is interesting to note that the recursive approach to calculating the combinatorial function avoids the excessively large numbers and inherent loss of resolution encountered when the factorials in the numerator and denominator are calculated prior to the fraction.

The following Matlab code implements the recursive combinatorial function.

function N=combin(n,m)

if n < m


%Invalid # of elements

    N = 0;

elseif (n == m)|(m == 0) 
%Terminating condition on recursion

    N = 1;

else



% Recursion algorithm

    N = n/(n-m) * combin(n-1,m);

end

The standard or 2-dimensional combinatorial function is very useful for several disciplines of engineering including electrical engineering.  For example, it is often used in the analysis and simulation of binary communication systems or binary error control algorithms.  However, m-ary communications and non-binary errors codes require a more complex analysis tool than a 2-dimensional combinatorial function.  For these situations, an m-dimensional or general combinatorial function is required.

A general or multinomial combinatorial function calculates the number of ways m subpopulations containing n1, n2, . . . , nm members can be ordered without consideration to the ordering within the subpopulations.  Note that this is a direct extension of the more familiar binary combinatorial function.  The multinomial combinatorial function can be calculated using the formula:
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where the array N is defined as 
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.  Note that 0! = 1 and thus subpopulations of zero quantity are allowed and the case where m = 2 reduces to the familiar binary combinatorial function. [5]

The multinomial combinatorial can also be expressed in a recursive algorithm.  The derivation is left up to the reader and may be a good classroom assignment for the instructor.  The following Matlab code calculates the multinomial combinatorial function.

function N=comb(n)

S = size(n);

if S(1,2)==1


%Terminating condition

  N=1;

elseif n(1,1)==0

%First population is zero

  N=comb(n(1,2:S(1,2)));

else



%Recursion

  n(1,1)=n(1,1)-1;

  N=round((sum(n)+1)/(n(1,1)+1)*comb(n));

end

The function comb will be used in a later program for generating n-length q-nary sequences.

A Recursive Algorithm for Generating the Family of n-length Binary Sequences with Weight m
As mentioned previously, an algorithm was sought to generate all n-length binary sequences (codewords for example) with a defined Hamming weight m.  The algorithm developed uses a systematic approach to create an array whose columns contain the sequences.  Therefore, the number of columns (row length) of the matrix will therefore be 
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.  The approach used will lead to a recursive implementation that is based on the row patterns rather than on the columns containing the sequences.

Let 
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 ones listed in increasing order, e.g.,
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It has been found that the matrix 
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.  The recursive algorithm found suggests a concise recursive program that is relatively simple to implement.  The recursive definition for 
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Recursive Definition: For 
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where the first row consists of 
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 ones.  The terminating conditions for the recursion are the length-k column vectors 
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Although tedious by hand, this approach lends itself well to implementation as a concise computer program that reflects the recursive nature of the algorithm very well.  The following Matlab code implements the above algorithm.

function M=m2(n,m)

%This function returns an n by combin(n,m) matrix whose

%columns consist of all n-vectors containing m ones and

%n-m zeros

if m==0


M=zeros(n,1);

%Terminating Condition

elseif m==n


M=ones(n,1);

%Terminating Condition

else


M=[zeros(1, combin(n-1,m)) ones(1, combin(n-1,m-1)); m2(n-1,m) m2(n-1,m-1)];

end

Note that the recursion for 
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 is less obvious.  Also, the recursion takes us from one entity (a matrix) to a pair of different entities (matrices of a different size).  This type of recursion is handled well in the matrix friendly environment of Matlab.  The recursive algorithm and the corresponding recursive programs can be extended even further to the non-binary sequences.

A Recursive Algorithm for Generating the Family of n-Length Non-Binary Sequences with Weights ni
The binary algorithm above can be expanded to the trinary and more general q-nary cases.  The trinary and q-nary algorithms are developed in the following sections.

An Algorithm for Generating the Family of n-length Trinary Sequences with a Given Weight

The binary sequence algorithm can readily be extended to the trinary case.  For example, let 
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Recursive Definition: For 
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1. The conditions where the trinary case can be reduced to the binary case can be identified
(a)
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3. The terminating conditions are the binary terminating conditions listed in the previous section.

The following Matlab code implements the above algorithm.

function M=m3(n,n1,n2)

%This function returns an n by comb([n-n1-n2 n1 n2]) matrix whose

%columns consist of all n-vectors containing n1 ones, n2 twos, and

%n-n1-n2 zeros

if n2==0

%Reducing to binary case

  M=m2(n,n1);

elseif n1==0

%Reducing to binary case with 1's replaced by 2's

  M=2*m2(n,n2);

elseif n==n1+n2
%Reducing to binary case with 0's replaced by 1's and 1's by 2's

  N = [n-n2 n2];

  M=m2(n,n2)+ones(n,comb(N));

else



%Trinary recursion

  p1= comb([n-n1-n2-1 n1 n2]);

  p2= comb([n-n1-n2 n1-1 n2]);

  p3= comb([n-n1-n2 n1 n2-1]);

  M=[zeros(1, p1) ones(1, p2) 2*ones(1, p3); m3(n-1,n1,n2) m3(n-1,n1-1,n2) m3(n-1,n1,n2-1)];

end

An Algorithm for Generating the Family of n-length q-nary Sequences with Given Weights

Let s denote a row vector of distinct integers representing the symbols used in a q-nary sequence.  Let n denote a q-length row vector 
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 denote the length of the sequence.  This notation is a generalization of the trinary notation removing the now redundant total vector length.  The development of the general q-nary recursion algorithm is left to the reader and would make an excellent advanced problem for students.  The recursive algorithm again tends to reduce the problem from q-nary to (q-1)-nary etc. and finally to the binary case.  Thus the terminating conditions are the same as those presented above.

The Matlab code for generating N-length q-nary sequences of a given weights n is as follows:

function M=mq(n, s)

S=size(n);

if S(2)==1

%S-length vector of only one element

  M=s(1)*ones(n,1);

elseif all(n)==0
%Not all symbol weights non-zero

  j=1;


%Remove zero-weight symbols from s() and n()

  mm=~n;

%Determine j = index of the first zero-weight symbol

  while mm(j)==0

   j=j+1;

  end

  if j==1

%Remove the first zero-weight symbol

    n=n(1, 2:S(2));

    s=s(1, 2:S(2));

  elseif j==S(2)

    n=n(1, 1:S(2)-1);

    s=s(1, 1:S(2)-1);

  else

    n=[n(1, 1:j-1)  n(1, j+1:S(2))];

    s=[s(1, 1:j-1)  s(1, j+1:S(2))];

  end

  M=mq(n,s);

%Now recursively call with reduced symbol list

else


%All symbol weights non-zero

  I=eye(S(2));

  r1=[];

  r2=[];

  for i=1:S(2)

    r1=[r1 s(i)*ones(1, comb(n-I(i,:)))];

    r2=[r2 mq(n-I(i,:),s)];

  end

  M=[r1; r2];

end

Conclusions

The algorithms presented in this paper are good examples of practical and instructive recursive programs.  The development of the recursive algorithms from simple to fairly complex provides instructors with a progressive learning tool for teaching recursion.  The resulting algorithms are not arbitrary, but rather are useful algorithms for solving real engineering problems; a fact that is often appealing and gratifying to students.  Recursive programming techniques are often not presented to students, but are often useful for many algorithms.  The examples presented in the paper can be used to supplement traditional programming or Matlab courses with recursive algorithm techniques.

All of the examples in this paper are presented in Matlab code, but can be ported to other languages with some effort.  The complexity of debugging recursive programs is often daunting, but modern tools such as Matlab’s graphical debugging tools can greatly assist the programmer with this task. [6]  Recursion, though sometimes resulting in less efficient computation, is still a useful programming technique that may reduce code development time and increase the readability of the resulting code. [2]
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